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INTRODUCTION 
 

   It is common that most dynamics encountered in physical life 

express the states of situation.  A more realistic system should 

encompass not only the present states (t) but also the past states 

(t-r) of the system.  This principle appears to permeate various 

aspects of life and has of late influenced many researches. 

   A differential equation, which involved the present states as 

well as the past states of any physical system, is known as 

delay differential equation (functional differential equation); 

Delay differential system are further divided into two broad 

types:(a) retarded functional differential equations, where 

delay is only in the states of the system. 
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 rrtx
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 x(t0) = x0 = o; s(t – r) 

and (b) neutral functional differential equations; delays are in 

the states as well as in the derivative, 
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 x(t0) = x0 = o; s(t – r) 

   A unique solution of systems (1) and (2) are not easily come 

by, unlike the ordinary differential equation.  

 

 

 

 But, the establishment of conditions for existence and 

uniqueness of solution of equations (1) and (2) by Hale and 

Verduyn (1993), Driver (1995) and Lambert(2004) confirmed 

that the system solution exists and are unique.  A founder-like 

analysis of the existence of the solution approached by Wright 

(1999) and Falbo (1998) also confirmed the existence and 

uniqueness theory on solutions of functional delay differential 

system. 

   Several concepts have been formulated to find an analytic 

solution of the functional delay differential system by solving 

the characteristics equation.  The major setback has been on 

their special transcendental characters, which result in 

solutions being expressed in an infinite series form.  Lam 

(1994) considered the connections between the theory and 

problems of the system.  In his view, not the entire series 

solution but few can characterize the system problem. 

Therefore, he employed the Pade approximation which results 

in a shortened repeating fraction for the approximation of the 

characteristic equation.  Ash and Ulsoy (2003) and Ulsoy and 

Ash(2005 ) solved the transcendental characteristic equations 

(1) and (2) by using a class of functions known as Lambert 

functions (Lambert 2004),  with the limitation that a delay 

functional equation that does not satisfy the Lambert functions 

cannot be solved. 

   

 

 

 

ABSTRACT 
 

A new numerical method of solving linear delay differential equations based on the concept of step-by-step approximation of the system 
equation is formulated.  The solution is presented in the of nth finite series of kth order for n + 1-subinterval.  Its application to numerical 
problems confirmed its suitability. 
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 Solution of linear delay differential equation 

 

 

This paper presents a new numerical approach which is an 

approximating concept based on step-by-step solving of the 

system on each interval.  The advantage of this approach is that 

the approximate solution obtained is  analogous to the general 

solution  of the ordinary differential equations. 

PROBLEM STATEMENT 

Consider a general delay system of the form: 
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tx

rtaxtx

 r > 0                      (3) 

Consider equation (3) on the xn sub-interval: 

x1; to - r < t < to 

x2; to < t < to + r 

x3; to + r < t < to + 2r 

x4; to + 2r < t < to + 3r 

xn; to + (n – 1)r < t < to + nr 

such that r > 0 and t  (to – r, to + nr). 

Mathematical formulation 

Step by step analysis of equation (3) follows: 

;)()( rtaxtx   t – ro < t < to                    (4) 

Defining the interval of t in terms of the delay variable (r). 

 to – 2r < t – r < to – r 

then 

 x1(t) = o - ax(t – r) 

 x1(t) = o - ax(t – r)t + c 

Solving for c using equation(3), we get that 

 c = o - o (to - r) + ax (to – r)(to – r) 

Therefore, x1(t) = o                     (5) 

For x2(t); to < to < + r  

this implies that  to – r < t – r < to 

such that   

    x(t – r) = to 

oo atx  )(2
  

x2 (t) = 2(t) - ao(t) + c 

From equation(5), we can see that  

c = o -  o(to) + ao(to) 

Therefore, 

X2(t) = o - a(t – to)                               (6) 

For x3(t); to + r < t < to + 2r, this implies that   

   to < t – r < to + r 

such that      x(t – r) = to + r 

x3(t) = o + a(o a (t – to)) 

x3(t) = o(t) + ao (t) – a2   ; ctot2

2t
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From equation(6) we can see that 
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Therefore, 

x3(t) = o + ao (t - to) + a2 

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for x4(t); to + 2r < t < to + 3r  this implies that to + r < t-r < to + 

2r such that x(t – r) = to + 2r 

x4(t) = o + a 
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From equation(7) we can see that 
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Therefore, 
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NUMERICAL APPLICATION 

1)x(t(t)x   

x(t) = 1;  0 < t < 1                         (9) 

Consider equation (9) on the interval 0 < t < 1; 

then 

1(t)x                                                           (10) 

On 1 < t < 2 defining t in terms of the delay   0 < t – 1 < 1 

such that x(t – 1) = 1 

1)(t x  (t)1x(t) x   

x(t) = 2t + c 

Solving for c, using equation (10) at t = 1, 

we get that   

x2(t) = 2(t – 1) + 1                     (11) 

x2 (t – 1) = 2(t – 2) + 1     

  

On 2 < t < 3, this implies that 1 < t – 1 < 2                   (12) 

such that x(t – 1) = 2 

1)- (t 1) - (t1x(t)x
2

x  

x (t) = 2 + 2 (t – 2) 

x(t) = 2t + (t – 2)2 + c 

Solving for c using equation (11) at t – 2 

x3(t) = 1 + 2(t – 1) + (t – 2)2           (13) 

x3(t – 1) = 1 + 2(t – 2) + (t – 3)2                        (14) 

On 3 < t < 4 this implies that 2 < t – 1 < 3 

such that x(t -1) = 3 

x (t) = x1(t) + x3 (t – 1) 

x (t) = 2t + 2 (t – 2) + (t – 3)2 

x(t) = 2t + (t – 2)2 + c
t




3

)3( 3

 

Solving for c, using equation (13) at t = 3 

x4 (t) = 1 + 2 (t – 1) + (t – 2)2 + 
3

)3( 3t
 

 x4 (t – 1) = 2 (t – 2) + (t – 3)2 + 
3

3)4( t
                       (15) 

On n < t < n + 1 

x(t) = 1 + 2 (t – 1) + 
n!

nn)2(t
 ...
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The general series form of x(t) is 

X(t) = 1 + 





1m

0k
0 k     ;

k!

kk)(t
2                         (16) 

CONCLUSION 

An approximate solution of a functional linear delay 

differential equation is obtained for each n + 1 – subinterval.  

The advantage of this method is that behavior of solutions such 

as stability analysis on each subinterval can be formulated.  

Also, solutions obtained are comparable to the general solution  

of the ordinary differential equation. 
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